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Onset condition of modulated Rayleigh-Beard convection at low frequency
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The onset condition of convection in a layer of fluid bounded by isothermal walls, with lower temperature
varying sinusoidally in time at very low nondimensional modulation frequency, is derived in closed form,
based on the Floquet theory and using a matched-asymptotic WKB method.
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It is well known that a layer of fluid develops convection equation is exact for the asymptotic stability problem. For
rolls when the basic temperature gradient is sufficientlythe present problem the coefficients of the Mathieu equation
large. For isothermal walls the onset conditifij corre-  depends inversely o andw?, and the solution in the limit
sponds to critical Rayleigh number Ral707.762 and criti- «»—0 will be obtained by a matched asymptotic method.
cal wavelength of the rolls 2d/3.117, whered is the layer Consider an infinite layer with upper and lower wall tem-
thickness. Here, the lower wall temperature is allowed toperatures maintained aly and Tg+Tscose*t*. The
vary very slowly in time in a sinusoidal fashion, whereas thelength, time, velocity, and temperature are scaled, respec-
upper wall temperature is held at the mean low-wall tem+ively, by d, * ~%, andx/d. The nondimensional perturba-
perature. In this situation convection occurs during the sution equations subjected to stress-free wall conditions are
percritical part of the cycle, but damps out in the subcritical

part of the cycle[2]. During the supercritical part of the wPr 1v2w,— V4w=Rav? ¢, (1)
cycle, the amplitude of convection can grow to a signifi-

cantly large value on a linear basis if the nondimensional w 0,—V20=—T,(z,t)w, 2
modulation frequencyn, defined byw= w*d?/ k, is small.

The parametew measures the ratio of the dimensional fre- W(X,y,0t)=w,AX,y,0t)=0(x,y,0t)=0, (©)]

quencyw* and the thermal diffusive rate/d?, wherek is
the fluid thermal diffusivity. In reality, nonlinear effects se
in to limit amplitude growth. During the growth phase ran-

dom forcingspcan cogple to nonlin%ar ef?ects ar?d break the WOy, LD =wadxy, 1) =600xy, 10 =0,

symmetry of the Floguet cycle. Transitions to other type ofyherew(x,y,z,t) and 8(x,y,z,t) are, respectively, the per-
flow patterns can occur. Such possibility has been considerggrpational vertical velocity and temperature ahgz,t) is

for the Taylor vortex flow[3], and and typically a strong  the basic temperature gradient. Here the subscript variables

forcing is required. _ o N of t andz denote partial derivatives with respect to time and
For small background noises, a sufficient condition forine vertical coordinate. The leading order @, is

instability is the occurrence of net growth over a Completez-indpendent asT,— —{1+0(wY?) ¢(z,t)}cost when o
modulation cycle, i.e., in the Floquet sense. So far, no X1, such thaté(z,t) is an O(1) function. The Rayleigh

plicit stability condition has been derived for modulated , mper and Prandtl number are, respectively, defined as Ra
Rayleigh-Beard (RB) convection in the limitw—0. As » —gT%d% «v and Pe v/ k.

—>Q, most dl_rect numerical methods yield ill-conditioned so- Consider a solution of the form
lutions. For instance, for the onset problem Rosenblat and

t and

Herbert[4], Rosenblat and TanaK&], Yih and Li [6], and w=e~ P2 t)sin( 77z) cog K, X + kyY), (4)
Or and Kelly[7] all computed the stability limit down to a
certain  value and stopped. Dowde8] used a WKB 6=A"te” (1+PIU2¢@ (t)sin( 7z)cog kx + ky), (5

method but without a matched asymptotic approach. Because
of that the onset condition derived is valid only for a singlewhere k, and k, are the horizontal wave numbers and
frequency value,o=0. Considerable nonlinear analyses =(m?+k?) with k?= (k{+k7) and e=w/A, with the coef-
have been done, for instance, using the amplitude equatidiitient W governed by the Mathieu equation
approachH9] or modal method involving a nonlinear Mathieu
equation 10]. However, the limitw— 0 was not examined in EW=Q(t)W, with Q(t)=(5+r cost), (6)
the analyses.

The onset condition is derived here for the asymptoticwhere = (1—Pr)%/4, r=PrRa/Rga, and Rg=A%k?.
range, using a matched-asymptotic WKB metibd]. Sev- The zero-frequency asymptotic limit correspongs 0.
eral simplifications make the problem tractable analytically.For onset of instability in the Floquet seng@(t) changes
First, asw— 0 the basic temperature gradient is constant. Irsign in the period 0,27], andt=t, , are the pair of turning
the leading order, the stability equations do not have explicipoints at whichQ=0. The character of the solution changes
dependence on the vertical coordinate. Second, a stress-frexally in the interval[ 0,77] as the sign ofQ(t) changes. In
wall condition is assumed. With this condition the Mathieu order to obtain the solution a/(t) over a complete Flogquet
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FIG. 1. Exact neutral curve and analytical on-
set condition.

/A

period, several inner and outer solutions, together with theiare loops alternating in synchronoiselid) and subharmonic
locally scaled equations, have to be constructed and matchédashed modes. Of particular interest is the local minima of
asymptotically across the turning poirfi@]. OnceW(t) is r=Ra/Rg. The left-hand side of Eq11) is a cosine func-
obtained, the onset condition of convection istion and therefore has a period ofr2 The minima of the
|W(27)/W(0)|>elt*P)7'e The procedure is straight for- synchronous and subharmonic modes correspond to the
ward but tedious and will not be described here. It yields themaxima (¢=2ns) and minima(#=2(n+ 1/2)=) of the co-
onset condition for the synchronous mode sine function co®. For the synchronous mode, the minima
are determined by

sin eZ/e<I>1>e(l+ Pr)'rr/e, (7)

L, | +2 cod o
PR R Pk

2rlg=e2nm, 2=el@m=20) (12)

and another onset condition for the subharmonic mode, These two simultaneous equations give the minima

1 1 2
I - 2le®q - _ A(1+Pr)mle S__ =
sm( ECDZ +2 cos( E‘Dz i< ¢ ., (8 € =in2tonms’ (13
where®d, , are integrals given by S 2nm \?[ 7\? 1o 14
t nlin2+2na) \lg) n=123.... (149

(—Q)YAt. 9
1 The casen=0 is not admitted as solution because0 and

Note that in general both synchronous and subharmonic sO- becomes arbitrary. For the subharmonic mode, the minima

lutions are expected. Fob,=0, i.e.,Q(t) does not change are determined by
sign, Eqs(7) and(8) give the more restricted onset condition 2\/FI v=€e2(n—1/2)7 2= glle(2m—2\Tlq). (15)

el/s(ZLI)l—(l-%—Pr)ﬂT);l (10) . . . o
' These two simultaneous equations give the minima

Equations(7) and(8) can be simplified further. For illustra- >

tion, consider Pr1. In this case®;=\rl, and ®, = ’ (16)
=24rly, wherel y= [ 7"%/costdt~1.1981. From Eqg7) and In2+2(n—1/2)m
(8), the neutral curve for the synchronous mdgeus sign 5 )
and subharmonic modgninus sign is given by Ho 2(n—12)m ) (z (17)
F " AIn2+2(n=1/2)m) \ly) "’
r -
2 005{?%} = +etl@m=2o), (1) wheren=1,23.... InFig. 1, the minima from Eqs(13),

(14), (16) and (17) are shown, respectively, by crosses and
In Fig. 1, the neutral curve is computed from the exactcircles, for the range=0.1 to 5.0. These points terminate to
Oberbeck-Boussinesq equations downattA =0.2. These the right atn=1. The outermost loop of the exact solution
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corresponds to a subharmonic mode, with minimurrriéu dition derived here demonstrates the occurrence of indefi-
=1.64 andr['=4.61. Except for the outermost dashed loop,hitely alternating synchronous and subharmonic loop-shaped
the crosses and circles match the exact minima of the loopseutral curves a®— 0. The analytical result serves to close
very well. the gap left uncomputed from several numerical studies

As € decreases toward zero, the neutral curve loops occuyd—8] on modulated RB convection. The matched asymptotic
indefinitely in alternating fashion. The analytical result indi- WKB method appears promising and is potentially useful for
cates r>,r"—(m/1)?, as n—x. Thus, ri=r—r,.  computing other types of low-frequency modulated instabili-
=(/1,)°~6.8756. To conclude, the closed-form onset con-ties.
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