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Onset condition of modulated Rayleigh-Be´nard convection at low frequency
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The onset condition of convection in a layer of fluid bounded by isothermal walls, with lower temperature
varying sinusoidally in time at very low nondimensional modulation frequency, is derived in closed form,
based on the Floquet theory and using a matched-asymptotic WKB method.
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It is well known that a layer of fluid develops convectio
rolls when the basic temperature gradient is sufficien
large. For isothermal walls the onset condition@1# corre-
sponds to critical Rayleigh number Rac51707.762 and criti-
cal wavelength of the rolls 2pd/3.117, whered is the layer
thickness. Here, the lower wall temperature is allowed
vary very slowly in time in a sinusoidal fashion, whereas t
upper wall temperature is held at the mean low-wall te
perature. In this situation convection occurs during the
percritical part of the cycle, but damps out in the subcriti
part of the cycle@2#. During the supercritical part of the
cycle, the amplitude of convection can grow to a sign
cantly large value on a linear basis if the nondimensio
modulation frequencyv, defined byv5v* d2/k, is small.
The parameterv measures the ratio of the dimensional fr
quencyv* and the thermal diffusive ratek/d2, wherek is
the fluid thermal diffusivity. In reality, nonlinear effects s
in to limit amplitude growth. During the growth phase ra
dom forcings can couple to nonlinear effects and break
symmetry of the Floquet cycle. Transitions to other type
flow patterns can occur. Such possibility has been consid
for the Taylor vortex flow@3#, and and typically a strong
forcing is required.

For small background noises, a sufficient condition
instability is the occurrence of net growth over a compl
modulation cycle, i.e., in the Floquet sense. So far, no
plicit stability condition has been derived for modulat
Rayleigh-Bénard ~RB! convection in the limitv→0. As v
→0, most direct numerical methods yield ill-conditioned s
lutions. For instance, for the onset problem Rosenblat
Herbert@4#, Rosenblat and Tanaka@5#, Yih and Li @6#, and
Or and Kelly @7# all computed the stability limit down to a
certain v value and stopped. Dowden@8# used a WKB
method but without a matched asymptotic approach. Beca
of that the onset condition derived is valid only for a sing
frequency value,v50. Considerable nonlinear analys
have been done, for instance, using the amplitude equa
approach@9# or modal method involving a nonlinear Mathie
equation@10#. However, the limitv→0 was not examined in
the analyses.

The onset condition is derived here for the asympto
range, using a matched-asymptotic WKB method@11#. Sev-
eral simplifications make the problem tractable analytica
First, asv→0 the basic temperature gradient is constant
the leading order, the stability equations do not have exp
dependence on the vertical coordinate. Second, a stress
wall condition is assumed. With this condition the Mathi
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equation is exact for the asymptotic stability problem. F
the present problem the coefficients of the Mathieu equa
depends inversely onv andv2, and the solution in the limit
v→0 will be obtained by a matched asymptotic method.

Consider an infinite layer with upper and lower wall tem
peratures maintained atT0* and T0* 1Td* cosv* t* . The
length, time, velocity, and temperature are scaled, resp
tively, by d, v* 21, andk/d. The nondimensional perturba
tion equations subjected to stress-free wall conditions ar

vPr21¹2wt2¹4w5Ra¹'
2 u, ~1!

v u t2¹2u52Tz~z,t !w, ~2!

w~x,y,0,t !5wzz~x,y,0,t !5u~x,y,0,t !50, ~3!

and

w~x,y,1,t !5wzz~x,y,1,t !5u~x,y,1,t !50,

wherew(x,y,z,t) and u(x,y,z,t) are, respectively, the per
turbational vertical velocity and temperature andTz(z,t) is
the basic temperature gradient. Here the subscript varia
of t andz denote partial derivatives with respect to time a
the vertical coordinate. The leading order ofTz is
z-indpendent, asTz→2$110(v1/2)f(z,t)%cost when v
!1, such thatf(z,t) is an O(1) function. The Rayleigh
number and Prandtl number are, respectively, defined as
5gTd* d3/kn and Pr5n/k.

Consider a solution of the form

w5e2(11Pr)t/2eW~ t !sin~pz!cos~kxx1kyy!, ~4!

u5D21e2(11Pr)t/2eQ~ t !sin~pz!cos~kxx1kyy!, ~5!

where kx and ky are the horizontal wave numbers andD
5(p21k2) with k25(kx

21ky
2) and e5v/D, with the coef-

ficient W governed by the Mathieu equation

e2Ẅ5Q~ t !W, with Q~ t !5~d1r cost !, ~6!

whered5(12Pr)2/4, r 5PrRa/Ran, and Ran5D3/k2.
The zero-frequency asymptotic limit correspondse→0.

For onset of instability in the Floquet sense,Q(t) changes
sign in the period@0,2p#, andt5t1,2 are the pair of turning
points at whichQ50. The character of the solution chang
locally in the interval@0,p# as the sign ofQ(t) changes. In
order to obtain the solution ofW(t) over a complete Floque
©2001 The American Physical Society01-1
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FIG. 1. Exact neutral curve and analytical o
set condition.
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period, several inner and outer solutions, together with th
locally scaled equations, have to be constructed and mat
asymptotically across the turning points@9#. OnceW(t) is
obtained, the onset condition of convection
uW(2p)/W(0)u.e(11Pr)p/e. The procedure is straight for
ward but tedious and will not be described here. It yields
onset condition for the synchronous mode

sinS 1

e
F2D12 cosS 1

e
F2De2/eF1.e(11Pr)p/e, ~7!

and another onset condition for the subharmonic mode,

sinS 1

e
F2D12 cosS 1

e
F2De2/eF1,2e(11Pr)p/e, ~8!

whereF1,2 are integrals given by

F15E
0

t1
Q1/2d t̄, F25E

t1

t2
~2Q!1/2d t̄. ~9!

Note that in general both synchronous and subharmonic
lutions are expected. ForF250, i.e.,Q(t) does not change
sign, Eqs.~7! and~8! give the more restricted onset conditio

e1/e„2F12(11Pr)p…>1. ~10!

Equations~7! and ~8! can be simplified further. For illustra
tion, consider Pr51. In this case F15ArI 0 and F2

52ArI 0, whereI 05*0
p/2Acostdt'1.1981. From Eqs.~7! and

~8!, the neutral curve for the synchronous mode~plus sign!
and subharmonic mode~minus sign! is given by

2 cosHAr

e
I 0J 56e1/e(2p22ArI 0). ~11!

In Fig. 1, the neutral curve is computed from the ex
Oberbeck-Boussinesq equations down tov/D50.2. These
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are loops alternating in synchronous~solid! and subharmonic
~dashed! modes. Of particular interest is the local minima
r 5Ra/Ran . The left-hand side of Eq.~11! is a cosine func-
tion and therefore has a period of 2p. The minima of the
synchronous and subharmonic modes correspond to
maxima (u52np) and minima„u52(n11/2)p… of the co-
sine function cosu. For the synchronous mode, the minim
are determined by

2ArI 05e2np, 25e1/e(2p22ArI 0). ~12!

These two simultaneous equations give the minima

en
S5

2p

ln 212np
, ~13!

r n
S5S 2np

ln 212np D 2S p

I 0
D 2

, n51,2,3, . . . . ~14!

The casen50 is not admitted as solution becauser 50 and
e becomes arbitrary. For the subharmonic mode, the min
are determined by

2ArI 05e2~n21/2!p, 25e1/e(2p22ArI 0). ~15!

These two simultaneous equations give the minima

en
H5

2p

ln 212~n21/2!p
, ~16!

r n
H5S 2~n21/2!p

ln 212~n21/2!p D 2S p

I 0
D 2

, ~17!

wheren51,2,3, . . . . In Fig. 1, the minima from Eqs.~13!,
~14!, ~16! and ~17! are shown, respectively, by crosses a
circles, for the rangee50.1 to 5.0. These points terminate
the right atn51. The outermost loop of the exact solutio
1-2
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corresponds to a subharmonic mode, with minimum ate1
H

51.64 andr 1
H54.61. Except for the outermost dashed loo

the crosses and circles match the exact minima of the lo
very well.

As e decreases toward zero, the neutral curve loops oc
indefinitely in alternating fashion. The analytical result ind
cates r n

S ,r n
H→(p/I 0)2, as n→`. Thus, r n

S5r n
H→r `

5(p/I 0)2'6.8756. To conclude, the closed-form onset co
05020
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dition derived here demonstrates the occurrence of ind
nitely alternating synchronous and subharmonic loop-sha
neutral curves asv→0. The analytical result serves to clos
the gap left uncomputed from several numerical stud
@4–8# on modulated RB convection. The matched asympto
WKB method appears promising and is potentially useful
computing other types of low-frequency modulated instab
ties.
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